

New & Recent B-Physics Results on

Lifetime and Mixing

P. Gutierrez

gut@fnal.gov

Department of Physics & Astronomy
University of Oklahoma

Outline

Results presented from BaBar, Belle, DØ, CDF, and Delphi

- 6 Lifetime Measurements
 - Overview
 - New lifetime ratios
 - Summary
- 6 Mixing Measurements
 - Overview
 - Arr New B_d mixing measurements
 - ightharpoonup New limit on B_s mixing
- $\delta \Delta \Gamma_s/\Gamma_s$ measurement
- Summary

Experimental Overview

B-Factories (BaBar, Belle)

$$e^+e^- \to \Upsilon(4S) \to b\bar{b}$$
 \triangle Clean environment

 $\sigma \approx 1 \text{ nb}$

LEP(Delphi)

$$e^+e^- \rightarrow Z \rightarrow b\bar{b}$$

 $_{\Delta}$ $\sigma \approx 7 \text{ nb}$

Clean environment

 \triangle Access to $B_s, B_c, \Lambda_b, \dots$

Tevatron (DØ, CDF)

$$\rho \bar{p} \rightarrow b \bar{b} + X$$

 $_{
m A}$ $\sigma pprox 150~\mu {
m b}$ @ 1.96 TeV

Multiple interactions, hardonic remnants

 \triangle Access to B_s , B_c , Λ_b , ...

Lifetime Measurements—Motivation

- 6 Lifetimes probe QCD at large distances (bound state)
- 6 For "Heavy" quarks expect lifetime to be dominated by quark
 - △ Lifetime differences observed in *D*-mesons
 - $_{f A}$ b heavier, expect smaller differences $(au(B_{q'})/ au(B_q)pprox 1)$
- 6 Leading OPE terms in Γ for "heavy" quark hadron decay:
 - Spectator term
 - ho Chromomagnetic term $(1/m_Q^2 \text{ suppression})$
 - 4-quark interaction term $(1/m_Q^3$ suppression)
- 6 Prediction $au(B_u^+) \geq au(B_d^0) pprox au(B_s^0) > au(\Lambda_b) \gg au(B_c^+)$
- 6 Experimental numbers given as ratios relative to B_d^0 to reduce systematics

Λ_b Lifetime

6 New lifetime ratio result from DØ (250 pb $^{-1}$)

$$\Lambda_b \to J/\psi + \Lambda^0 \to (\mu^+ \mu^-) + (p\pi^-)$$

 $B_d^0 \to J/\psi + K_s^0 \to (\mu^+ \mu^-) + (\pi^+ \pi^-)$

- Presently theory predicts $\tau(\Lambda_b)/\tau(B_d^0) \approx 0.9 \pm 0.05$ while the world average is 0.798 ± 0.052
- Previous ratio measurements used semileptonic decays
- First Λ_b ratio measurement using fully reconstructed decay modes
- CDF presented Λ_b lifetime measurement earlier this year using $\Lambda_b \to J/\psi + \Lambda^0$

Λ_b Lifetime

J/ψ - Λ^0 Mass Distribution

J/ψ - Λ^0 Lifetime Distribution

DØ: $\tau_{\Lambda_b} = 1.221^{+0.217}_{-0.179} \pm 0.043 \text{ ps}$

CDF: $\tau_{\Lambda_h} = 1.25 \pm 0.26 \pm 0.10 \text{ ps}$

World Avg: $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}$

DØ: $\tau_{B_d^0} = 1.397^{+0.107}_{-0.098} \pm 0.031 \text{ ps}$

DØ: $\tau_{\Lambda_b}/\tau_{B_J^0} = 0.874^{+0.169}_{-0.142} \pm 0.028$

Theory: $\tau_{\Lambda_b}/\tau_{B_d^0} = 0.9 \pm 0.05$

World Avg: $\tau_{B_s}/\tau_{B_d^0} = 0.798 \pm 0.052$

B_s Lifetime

6 New result from DØ on B_s to B_d lifetime ratio

$$B_s^0 \to J/\psi + \phi \to (\mu^+ \mu^-) + (K^+ K^-)$$

 $B_d^0 \to J/\psi + K^{*0} \to (\mu^+ \mu^-) + (K^+ \pi^-)$

- Use fully reconstructed modes to determine ratio
- Presently theory predicts $\tau(B_s)/\tau(B_d^0) = 1.00 \pm 0.01$ while the world average is 0.951 ± 0.038
- 6 Recent CDF B_s lifetime measurement using $B_s^0 \to J/\psi \phi$

B_s Lifetime

J/ψ - ϕ Mass Distribution

J/ψ - ϕ Lifetime Distribution

DØ: $\tau_{B_s} = 1.444^{+0.098}_{-0.090} \pm 0.020 \text{ ps}$

CDF: $\tau_{B_s} = 1.369 \pm 0.100 \pm ^{+0.008}_{-0.010}$ ps

World Avg: $\tau_{B_s} = 1.229 \pm 0.080 \text{ ps}$

DØ: $\tau_{B_d^0} = 1.473^{+0.052}_{-0.050} \pm 0.023$ ps

DØ: $\tau_{B_s^0}/\tau_{B_d^0} = 0.980^{+0.075}_{-0.070} \pm 0.003$ World Avg: $\tau_{B_s}/\tau_{B_d^0} = 0.951 \pm 0.038$

Theory: $\tau_{B_s^0}/\tau_{B_d^0} = 1.00 \pm 0.01$

B_u^+ Lifetime

- 6 Recent ratio measurements from DELPHI, DØ, and CDF
 - ho DELPHI uses NN on $Z
 ightharpoonup bar{b}$ (1.060 \pm 0.021 \pm 0.024)
 - DØ uses $B \to D^{*-} \mu^+ \nu + X$ dominated by $B_d^0(86\%)$ and $B \to \bar{D}^0 \mu^+ \nu + X$ dominated by $B_u^+(82\%)$ (250 pb $^{-1}$) (1.093 \pm 0.021 \pm 0.022)
 - CDF uses $B_d^0 \to J/\psi + K^{*0}$ and $B_u^+ \to J/\psi + K^+$ (250 pb $^{-1}$) (1.080 \pm 0.042)
- 6 New ratio measurement from BELLE $(1.066 \pm 0.008 \pm 0.008)$
 - From CP asymmetry measurement $29.1 \rightarrow 140 \text{ fb}^{-1}$
- 6 BaBar new B_d^0 lifetime $(1.501 \pm 0.008 \pm 0.030 \text{ ps})$
- 6 World Average (1.085 ± 0.017) Theory (1.06 ± 0.02)

Mixing—Overview

- Since Mass and Flavor eigenstates not equal, flavor states can mix.
 - Requires mass of eigenstates to differ $(\Delta m_q \neq 0)$
 - △ Mass eigenstates can have different lifetimes ($\Delta\Gamma_q \neq 0$)
 - riangle Standard Model expectation $\Delta m_q \gg \Delta \Gamma_q$

$$\mathcal{P}_{\text{mixed}}^{\text{unmixed}}(t) = \frac{1}{2} \Gamma_q \, e^{-\frac{\Gamma_q}{2}t} \left[\cosh \left(\frac{\Delta \Gamma_q}{2} t \right) \pm \cos \left(\Delta m_q t \right) \right]$$

Where $\Gamma_q = \frac{\Gamma_H + \Gamma_L}{2}$ the average of the decay widths of the two mass eigenstates.

Mixing—Overview

6 Mixing requires a $|\Delta B|=2$ transition $(B^0\to \bar B^0)$

- 6 Amplitude is $\propto |V_{tb}V_{td}|$ because of large t-quark mass
 - ^ Amplitude $\propto \sum_q S_0\left(\frac{m_q}{M_W}\right)$

Mixing—Procedure

- 6 Mixing requires measurement of initial and final flavor
 - Final state tagging examples

$$B_d^0 \to D^{*-} \mu^+ \nu_{\mu}$$

$$B_d^0 \to J/\psi K^{*+}\pi^-$$

$$\bar{B}_d^0 \to D^{*+} \mu^- \bar{\nu}_\mu$$

$$\bar{B}^0_d \to J/\psi K^{*-}\pi^+$$

- μ^{\pm} (π^{\pm}) provide tag for decay flavor
- First set not fully reconstructed, $\approx 5.4\%$ branching ratio
- Second set fully reconstructed, $\approx 8 \times 10^{-4}$ branching ratio

Mixing—Procedure

6 Initial state tagging

- 6 New result on B_d mixing from DØ & CDF ($\approx 250 \text{ pb}^{-1}$)
 - **Both use semi-lepton decays:** $B^0 \to \bar{D}\ell^+\nu_\ell$
 - Both use Same-Side-Tagging, CDF combines all taggers

CDF

$$B^0 \to \left\{ \begin{array}{c} D^{*-} \\ D^- \end{array} \right\} \quad B^+ \to \bar{D}^0$$

DØ

$$B \to \bar{D}^0 \quad \Rightarrow \quad \begin{cases} B^0 \to D^{*-} \\ B^+ \to \bar{D}^0 \end{cases}$$

 $B \to D$ Decays

- Same Side Tagging Algorithm
 - \triangle Cone about *B*-meson $\triangle R = 0.7$
 - $_{\rm L}$ Take π^{\pm} with smallest $p_T^{\rm rel}$
- 6 Main systematic π^{\pm} from D^{**} decay

Results

CDF(SST): $\Delta m_d = 0.443 \pm 0.052 \pm 0.030 \pm 0.012 \text{ ps}^{-1}$

CDF(All): $\Delta m_d = 0.536 \pm 0.037 \pm 0.009 \pm 0.015 \text{ ps}^{-1}$

DØ(SST): $\Delta m_d = 0.488 \pm 0.066 \pm 0.044 \text{ ps}^{-1}$

 $DO(O\mu T)$: $\Delta m_d = 0.506 \pm 0.055 \pm 0.049 \text{ ps}^{-1}$

PDG: $\Delta m_d = 0.502 \pm 0.007 \text{ ps}^{-1}$

- 6 New results from BELLE (by-product of CP asymmetry measurement) and BaBar
 - Use $B_d^0 \to D^{*-}\ell^+\nu$ and fully reconstructed hadronic modes BaBar uses only semi-leptonic mode
 - Flavor tag other B using ℓ^{\pm} , π^{\pm} K^{\pm} , Λ_s^0 not associated with reconstructed B BaBar opposite side ℓ^{\pm} only

B_s Mixing Limit

- 6 DELPHI has produced two new limits on B_s mixing
- Mixing limit obtained using "Amplitude" Method
 - Fit data to $\mathcal{P} = \frac{\Gamma}{2}e^{-\Gamma t}\left[1 \pm A\cos(\Delta m_s t)\right]$
 - Fit for A as a function of Δm_s
 - A peaks at 1 for a measurement
 - Sensitivity given by $1.645\sigma_A = 1$ 95% exclusion
 - Limit given by $A < 1 1.645\sigma_A$ 95% exclusion

B_s Mixing Limit

Data samples used for limit

- $\bar{B}^0_s \to D_s^+ \ell^- \nu_\ell + X$ Analysis
 - $D_s^+\ell$ is updated result with improved use of proper time resolution
 - Sensitivity improved from 8.4 ps $^{-1}$ to 8.6 ps $^{-1}$
- ightharpoonup High p_T Lepton Analysis
 - Event divided into 2 hemispheres by plane Transverse to Sphericity axis
 - Lepton gives decay tag
 - Lifetime from particles in lepton hemisphere
 - Production tag from Opposite Side jet charge NN, plus
 Same Side kaon combined in a single discriminant

B_s Mixing Limit

Amplitude Plot

Limits 95% CL

Lepton Analysis: $\Delta m_s > 8.0(12.0) \text{ ps}^{-1}$

 $D_s + \ell^{\pm}$ Analysis: $\Delta m_s > 4.9(8.6) \text{ ps}^{-1}$

All Delphi Analysis: $\Delta m_s > 8.5(12.0) \text{ ps}^{-1}$

PDG $\Delta m_s > 14.4~\mathrm{ps}^{-1}$

(Sensitivity)

$\Delta\Gamma_s$ —Overview

6 Lifetime of mass eigenstates not expected to be equal

- $\Delta \Gamma_q/\Gamma_q$ expected to be small, but since $\Delta m_s\gg \Delta m_d$ might expect $\Delta \Gamma_s/\Gamma_s\gg \Delta \Gamma_d/\Gamma_d$
 - $\Delta\Gamma_d/\Gamma_d \approx 0.01$ $\Delta\Gamma_s/\Gamma_s = 0.12 \pm 0.06$ Niertse, ... hep-ph/0012219
 - Cabbibo allowed $b \to c \to s$ transition for B_s while Cabbibo suppressed $b \to c \to d$ for B_d

$\Delta\Gamma_s$ —Analysis

Must separate out two mass eigenstates

These are the CP even and odd states

$$B_s^H = \frac{1}{\sqrt{2}} \left[|B_s\rangle + |B_s\rangle \right] \qquad CP \text{ odd}$$

$$B_s^L = \frac{1}{\sqrt{2}} \left[|B_s\rangle - |B_s\rangle \right] \qquad CP \text{ even}$$

- Use $B_s \to J/\psi \phi$ w/final state J=0 since J/ψ & ϕ have S=1 this $\Rightarrow \ell=0,1,2$ (S,P,D wave)
- $S \& D \Rightarrow CP \text{ even}$
- $P \Rightarrow CP \text{ odd}$
- 6 Goal is to disentangle different ℓ states

$\Delta\Gamma_s$ Analysis

Transversity Angles

lacktriangle Use $B_s o J/\psi \phi$ ($B_d o J/\psi K^{0*}$)

- ightharpoonup Work in J/ψ rest frame
- \wedge K^+K^- defines x-y plane
- Φ Θ , Φ are μ^+ polar, azimuthal angles, Ψ helicity angle of ϕ

Angular Distribution B_s

$$\frac{d^{4}\mathcal{P}}{d\vec{\rho}dt} \propto |A_{0}|^{2} f_{1}(\vec{\rho}) e^{-\Gamma_{L}t} + |A_{\parallel}|^{2} f_{2}(\vec{\rho}) e^{-\Gamma_{L}t} + |A_{\perp}|^{2} f_{3}(\vec{\rho}) e^{-\Gamma_{H}t} + \text{Re}(A_{0}^{*}A_{\perp}) f_{5}(\vec{\rho}) e^{-\Gamma_{L}t}$$

$$\vec{\rho} = (\Theta, \Phi, \Psi)$$

$\Delta\Gamma_s$ Analysis

Amplitudes

Lifetime

Results

$$A_0 = 0.784 \pm 0.039 \pm 0.007$$

 $A_{\parallel} = (0.510 \pm 0.082 \pm 0.013)e^{(1.94 \pm 0.36 \pm 0.03)i}$
 $|A_{\perp}| = 0.354 \pm 0.098 \pm 0.003$

$$\Delta\Gamma_s/\Gamma_s = 0.65^{+0.25}_{-0.33} \pm 0.01$$
 $\Delta\Gamma_s = 0.47^{+0.19}_{-0.24} \pm 0.01 \, \mathrm{ps}^{-1}$
 $au_L = 1.05^{+0.16}_{-0.13} \pm 0.02 \, \mathrm{ps}$
 $au_H = 2.07^{+0.58}_{-0.46} \pm 0.03 \, \mathrm{ps}$

Summary

- 6 New lifetime ratio measurements for B_u^+ , B_s^0 and Λ_b vs. B_d^0 from BELLE, CDF, and DØ
 - New DØ $\tau(\Lambda_b)/\tau(B_d^0)$ measurement consistent with theory, higher than world average
- 6 New measurements of Δm_d
 - For Tevatron, starting point for measurement of Δm_s
- 6 New Δm_s limit from DELPHI
- 6 CDF measures $\Delta\Gamma_s/\Gamma_s$